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Abstract 

We have developed a technique for estimating the diffuse and specular reflectance parameters 
of a rotating 3D object from an image sequence taken by a high-definition TV camera with a fixed 
position and direction and with a fixed-direction light source. Many researchers have studied the 
computation of reflectance parameters from the separated diffuse and specular components. 
However, for a complicated texture, complete separation is difficult to achieve. Unlike other 
methods, our technique estimates diffuse and specular parameters directly from the raw RGB 
data by iteratively minimizing fitting errors without knowing the light source color and object 
color. The diffuse and specular components can then be separated using the estimated diffuse and 
specular reflectance parameters. Experimental results with both synthesized and real data 
demonstrate that this approach effectively and stably recovers the reflectance parameters. 

 

1. Introduction 

Object reflectance properties are important in the 
acquisition of object models and textures to 
generate highly realistic synthesized images in 
computer graphics applications such as virtual 
reality, virtual museums, and virtual studios. 
Early research emphasized color space analysis 
for image segmentation by partitioning a color 
histogram into clusters, and several papers have 
discussed use of the dichromatic reflectance model 
to describe the illumination of a uniformly colored 
object in the color space [1,2] to enable separation 
of the diffuse reflection and specular reflection 
components. The separated components are used 
to segment a color image without disturbing the 
image highlight [3]. However, since this method is 
based on the assumption that the object is 
uniformly colored, it cannot handle the reflectance 
from objects with complex textures. 

The separation of reflection components by 
polarimetric imaging has recently drawn interest. 
Nayar, Fang and Boult [4] introduced a technique 
to separate the reflection components of a 
reflectance object with a complex texture by using 
polarization. They achieved high quality 
separation by assuming that diffuse reflection 
tends to be unpolarized while preserving the 
polarization characteristics of the incident light. 
The dichromatic model was used to compute 
reflection components for each point. 

Other techniques have been reported, such as 
shape from shading [5, 6] and photometric stereo 
[7,8] for analyzing images to recover the surface 
reflectance properties along with the surface 
shape under the assumption that the real object is 
Lambertian. Bernardini et al. [15] proposed 
constructing object models from range images by 
geometric alignment based on automatically 



selected points and obtained a high quality 
texture covering the generated model from 
intensity images by using a unique weighting 
scheme. This approach can also be used to process 
occlusions by applying a depth map. 

Recovering object reflectance properties from a 
color image sequence by using the concept of the 
temporal color space has been proposed [9] and 
successfully applied for object shape and 
reflectance modeling [10]. This method separates 
the diffuse and specular components and then 
computes the reflectance from the separated 
components using a known calibrated specular 
color vector and a measured diffuse reflection 
color. 

Unlike the methods mentioned above, we 
estimate reflectance properties directly from a 
intensity image sequence to reduce the errors 
during separation. The computed diffuse and 
specular reflectance properties are then used to 
separate the two components. The reflectance 
properties are estimated by applying an iterative 
algorithm to fit the color values from different 
views to a nonlinear reflection model for each 3D 
point on the surface. This permits more effective 
and stable recovery because the fitting is based on 
the raw RGB data used to compute all model 
parameters. 

This paper is organized as follows: Section 2 
explains the experimental setup we used to obtain 
the color image sequence. Section 3 describes the 
reflection model and the iterative nonlinear fitting 
algorithm used to estimate reflectance properties 
and to separate the two reflection components. In 
Section 4 we discuss preliminary experimental 
results concerning diffuse and specular 
components separated using the computed 
reflectance properties, and in Section 5 we 
conclude and discuss our future work. 

2. Experimental setup 

The experimental setup of our image-acquisition 
system is illustrated in Fig. 1. The object whose 
reflectance properties were to be estimated was 
mounted on a rotary table whose rotation in the 
direction shown was controlled with a PC. The 
position and orientation of an HDTV camera 
relative to the rotary table were fixed. The point 
light source direction was also fixed, and was 
measured under the assumption that the distance 

between the light source and object was greater 
than the object diameter. The color image 
sequences were obtained by rotating the 3D object 
around the rotation axis in fixed steps; for 
example, a step of 2 degrees would result in a 
sequence that contained 180 images. A single 
incandescent lamp was the light source and we 
measured the light source direction to compute 
reflectance properties and the surface normal. 

 

 

 

 

 

 

 

Figure 1. Experimental setup 

To obtain the intensity variation of a 3D point on 
the surface, the camera parameters [11], rotation 
axis, and rotary table location were well 
calibrated. The 3D coordinates in a camera 
coordinate system for each point on the object�s 3D 
surface were computed according to a modeling 
approach [14] and then reprojected onto each 
image to obtain the RGB values of the 
corresponding image pixels. In our experiments, 
the reprojected pixel was sampled as the average 
of a small window with a size such as 3 x 3 pixels 
to reduce the random noise under the assumption 
that the intensity variation on the image was 
smooth. 

3. Reflectance properties estimation 

The reflection from a 3D point is related to the 
normal of this point, the light direction, and the 
viewing direction. The obtained reflection 
variation from all angles allows us to compute the 
reflectance properties. Once the RGB data for 
each point on the 3D object surface are obtained, 
the reflectance properties can be analyzed. We did 
this estimation for each pixel independently of the 
neighboring pixels.  

3.1. Reflectance modeling 
Figure 2 shows the geometry of our experimental 
setup. The optical axis of the camera was collinear 
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with the z  axis and the rotation axis of the 
rotary table was collinear with the y  axis. 
Vector n  is the normal of a 3D point on the 
object surface and L  is the unit direction vector 
of the point light source. Vectors 'L  and 'n  are 
projections of L  and n  onto the XOZ  plane. 
Lϕ  is the angle between the light source direction 

and the y  axis and Lθ is the angle between the 
projection 'L  of L  and the z  axis. We used 
trigonometry to measure Lϕ  and Lθ  in 
advance. nϕ  is the angle between the normal 
and the y  axis; nθ  is the angle between the 
projection n′ of normal vector n and the x  
axis. 
 

 

 

 

 

 

 

 

 

Figure 2. Geometry of experimental setup 

Since the object surface reflectance can be 
modeled as a linear combination of the diffuse and 
specular reflection components for each channel, 
we used a simplified Torrance -Sparrow model 
[12] to describe this combination in the equation: 

22 2/)( σα−+⋅=+= eKnLKIII sdsd ,     (1) 
where nL ⋅  is the inner product of two vectors, 

dK  is the diffuse reflection parameter and sK  is 
the specular reflection parameter. Parameter α  
is the angle between the surface normal and the 
bisector of the light source direction and view 
direction. σ  is the standard deviation of a facet 
slope in the Torrance-Sparrow model. 

When coordinates ),( LL θϕ  are used to express 
the light direction and ),( θθϕ +nn  are used to 
express the normal after θ  angle rotation, 

according to Eq. (1) after some mathematical 
rearrangement, the diffuse component can be 
written as: 

CBAId ++= θθ cossin ,           (2) 
where parameters A, B and C in Eq. (2) are 
defined as: 
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The specular component is expressed as: 
( )( )2/)(exp FEDIs θ−−=  ,            (6) 

where sKD = , σ2=F . Since a Gaussian curve 
is used to approximate the specular component in 
the reflection variation, E is a parameter that 
indicates the highlight position in the variation 
curve. In other words, after E angle rotation, the 
current point will reach its maximum intensity. 
The light source direction was fixed and 
measured in advance, so after we computed the 
parameters in Eqs. (2) and (6) we were ready to 
calculate the reflection parameters and surface 
normal. From Eqs. (3) and (4), the normal is 
computed as: 
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The diffuse reflection parameter is given by: 
( ) ( )nd ttBtAtK ϕsin2/ 2112 +=           (8) 

In the general case, the light source direction 
vector, view direction vector, and normal vector of 
a 3D point are not coplanar, so the exponential 
part in Eq. (6) cannot reach 1.0. Therefore, the 
estimated parameter D is not the real specular 
parameter sK . However, we know that when the 
object is rotated E  degrees, the specular 
component will reach its maximum. If the angle 
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between the bisector and normal is β , the 
specular reflectance can be approximately 
compensated by: 

( )( )2/exp/ FDKs β−=  ,                  (9) 

We carried out the computation for each channel. 
Since six parameters are unknown in Eqs. (2) and 
(6), mathematically we need at least six samples 
from six different frames to fit the intensity 
variation. 

3.2. Parameter fitting 

To estimate each parameter in Eqs. (2) and (6) for 
each channel, our technique minimizes the sum of 
the squared intensity errors over all 
corresponding pixels of each view given by:  
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This nonlinear minimization problem is solved in 
our implementation by applying the Levenberg 
Marquardt iterative method [13].  

Unfortunately, this nonlinear iterative method 
only finds the locally optimal solution. This means 
that the minimization needs a good initial guess 
for each parameter. A bad initial guess may 
prevent the algorithm converging to the expected 
solution. In our implementation, we made the 
initial guess for each parameter according to the 
following method. The initial D value was the 
peak value in the measured data for each 3D 
point. The initial E value was the position of the 
peak. The initial F value was empirically given 
between 0.01 and 1.0. (We used 0.08 as the initial 
F value in our implementation.) Parameters A, B, 
and C were given the same initial value. Since the 
initial values of parameter D for three channels 
were already given and could be regarded as a 
vector in the RGB space, we found the vector from 
the measured data that had the largest angle 
with D in the RGB space. The vector found was 
used as the initial value of the parameters related 
to the diffuse component. This method is similar 
to the method in [9] for computing the body color 
vector, since the peaks for three channels is 
considered to be approximate to the light source 
color vector. However, the difference is that we do 
not fix the body color vector and light source color 
vector. These vectors were refined in the 
algorithm, because the initial guesses for them 
were not accurate enough, possibly because of 
noise, measurement error and environment light, 

or some other problem. 

3.3. Separating the two components 

When the parameters in Eqs. (2) and (6) have 
been estimated, the reflectance properties and 
surface normal can be computed using Eqs. (7), 
(8), and (9). We get three solutions for the surface 
normal from the three channels. Since the surface 
normal is invariant for each channel, these 
solutions are averaged to obtain the final normal. 
The mean of the Gaussian distribution and the 
standard deviation of the facet slope of a 3D point 
are intrinsic. Therefore, we also compute their 
average values from the solutions from the three 
channels. Using the estimated parameter values, 
the diffuse and specular reflection components 
dI ′  and sI ′  are computed by applying Eqs. (2) 

and (6). The separated diffuse and specular 
components of the original reflectance are then 
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Since the two components from the model may 
differ from the original data, we use the results of 
Eq (11) as the separated diffuse and specular 
reflection components. Since the sampled 
intensity variation data contains noise, for a small 
part of each 3D point, the fitting may result in 
negative diffuse or specular components. These 
failure points are interpolated using the 
separated values of neighboring points.  

Note that we use the measured light source 
direction only to compute the reflectance 
properties and the normal. We do not need the 
light source direction and the light source color 
vector for parameter fitting and separation. 

3.4. Summary of algorithm 

To summarize, our algorithm for estimating the 
reflectance properties and object shape uses the 
original reflection data to separate the diffuse and 
specular reflection components data. The inputs 
are the color data taken from a surface point with 
the corresponding pixel in the image sequence 
and the light direction. The outputs are the 
reflectance properties, object shape, and 
separated diffuse and specular reflection 
components. 

The algorithm loops through the following steps 



over each surface point: 

① Compute an initial guess for each fitting 
parameter in Eqs. (2) and (6); 

② Estimate the optimal parameters for 
minimizing the fitting error (10); 

③ Compute the reflectance properties and 
surface normal; 

④ Calculate the reflection components using 
the estimated parameters. 

The advantage of using the Levenberg Marquardt 
method rather than the straightforward gradient 
descent is that it converges after fewer iterations. 

4. Experimental Results 

With the experimental setup shown in Fig. 1, we 
performed experiments using synthesized and 
real data obtained from the image sequence. To 
verify the effectiveness of our algorithm for 
estimating reflectance properties, we synthesized 
a group of data using a mechanism similar to the 
experimental setup. The simulation results are 
shown in Table 1 where Kdr, Kdg, Kdb and Ksr, Ksg, 
Ksb are the respective diffuse and specular 
reflection parameters in the RGB channels. The 
other parameters were as shown in Fig.2 or as 
explained in Section 3. 

Table 1. Simulation result 

 Parameter values 
used for synthesis 

Estimated 
parameter values 

Kdr 0.777543 0.7775430 

Kdg 0.392522 0.3925219 

Kdb 0.491277 0.4912774 

Ksr 0.498124 0.4981243 

Ksg 0.586319 0.5863187 

Ksb 0.638829 0.6388292 

θL 35.000000  ゚  

φL 85.000000  ゚  

θn 10.000000  ゚ 10.034438  ゚

φn 90.00000  ゚ 90.000583  ゚

σ 0.050000 0.0500175 

To separate the diffuse and specular reflection 
components from the intensity variation data of 
one 3D point (Fig. 3(a)), we initialized the 
parameters from Eqs. (2) and (6) for the RGB 
channels. First, we located the peak position, 
which was at 0.13090 radians (7.5 degrees). The 
peak values at this position (231.15601, 
164.44566, and 192.27081) were given to 
parameter D for the three channels. The RGB 
vector (142.37891, 71.87617, and 89.96966) at 57 
degrees provided the initial values of parameter A 
for the three channels, because in the RGB color 
space this vector has the largest angle with the 
vector formed by parameter D for three channels 
[9]. Parameters B and C were processed in the 
same way as A. Although the standard deviation 
of the facet slope was 0.05 for the synthesis, 0.08 
was used as the initial value in our algorithm. 
The estimated normalized values were very close 
to the synthesis values (Table 1). The curves of the 
synthesized data for each channel are shown in 
Fig. 3(a). The curves of the two components 
separated using our algorithm are shown in Fig. 
3(b). 

In the experiment with real data, we used an 
HDTV camera (SONY HDC 750A) to obtain a 
sequence of images of a vase with a complex 
surface texture. The camera and light source were 
fixed while the 3D object rotated around the 
rotation axis (Fig. 1). The camera and rotation 
axis were well calibrated through a flexible 
technique [11] for sampling the intensity variation 
of each 3D point on the object surface. The image 
resolution was 1920 x 1080 pixels. Our algorithm 
was implemented through an Onyx2 system with 
four R10000 processors. The RGB intensity 
variation for all surface points was produced by a 
modeling method [14] using 180 frames taken 
from around the object to model all 3D points on 
the surface. Although six samples were enough to 
compute the curve parameters for each 3D point 
on each channel we took sample data from 31 
frames at 4 degrees intervals to form an 
over-determined nonlinear system. The temporal 
cost of this algorithm depends on the number of 
3D points n, which is given as O(n). The spatial 
cost is also related to n, given as O(n). 

Figure 4(a) shows an image from the image 
sequence. The reflectance parameters were 
estimated and then the two components were 
separated. Figures 4 (b) and (c) show, respectively, 



the separated diffuse and specular components. 
Note that a small part of the vase texture 
remained in the specular component. This was 
caused by misregistration between images during 

sampling of the pixel intensity variation. A visual 
comparison with the results given in Nayar et al. 
[4] shows that our separation was more complete. 
The experimental results with both synthesized 

    
(a)                                              (b) 

Figure 3. Synthesized RGB data (a) and separated two components (b) 

       
(a)                             (b)                               (c) 

Figure 4. Original image (a); separated diffuse component (b) and specular component (c).

and real data demonstrate the effectiveness of our 
algorithm. 

5. Conclusion 

We have developed a technique for estimating 
reflectance properties by observing an actual 
object and separating the diffuse reflection and 
specular reflection components using data from 
images of the actual object. A key feature of our 
technique is that we estimate the reflectance 
properties before separation to eliminate the error 
produced during separation. Another feature is 
that we estimate both diffuse and specular 

parameters at the same time without knowing 
the body color and light source color, which makes 
our method more effective and stable. This 
technique can be used for objects with a 
complicated texture and high specular reflectance. 
In principle, it can be applied to complicated 
object shapes such as shapes with occlusions, if 
sampled intensity data can be obtained. We will 
investigate the practicality of this in our future 
work. We also found that a small area 
corresponding to the highlight in the diffuse 
component did not look so natural because of the 
camera�s dynamic range. At present, our 



algorithm can only be used for an environment 
with a single point light source. In our future 
work, we will experiment with other object shapes 
and the multi-light source and area light sources. 
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